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PDEs. A recent attempt has been made by Jawerth and
Sweldens [29] to which the reader is referred for moreThe paper first describes a fast algorithm for the discrete orthonor-

mal wavelet transform and its inverse without using the scaling comparative information. The currently existing algo-
function. This approach permits to compute the decomposition of rithms can be classified in different ways. First of all, we
a function into a lacunary wavelet basis, i.e., a basis constituted can distinguish between Galerkin or Petrov–Galerkin
of a subset of all basis functions up to a certain scale, without

schemes, collocation schemes, and algebraic methods. Bymodification. The construction is then extended to operator-
the latter we mean algorithms which start from a classicaladapted biorthogonal wavelets. This is relevant for the solution of

certain nonlinear evolutionary PDEs where a priori information discretization, e.g., by finite differences in space. Wavelets
about the significant coefficients is available. We pursue the ap- are then used in the following stages to speed up the linear
proach described in (J. Fröhlich and K. Schneider, Europ. J. Mech. algebra. On the other hand, the former two schemes em-
B/Fluids 13, 439, 1994) which is based on the explicit computation

ploy wavelets or wavelet-like functions directly for theof the scalewise contributions of the approximated function to the
discretization of the solution and the operators which thenvalues at points of hierarchical grids. Here, we present an improved

construction employing the cardinal function of the multiresolution. induces the subsequent linear algebra.
The new method is applied to the Helmholtz equation and illustrated Another classification can be made according to whether
by comparative numerical results. It is then extended for the solution a wavelet representation is used for the efficient represen-
of a nonlinear parabolic PDE with semi-implicit discretization in time

tation of an operator, the compressed representation ofand self-adaptive wavelet discretization in space. Results with full
the solution or for both. The first family comprises theadaptivity of the spatial wavelet discretization are presented for

a one-dimensional flame front as well as for a two-dimensional ‘‘decomposition schemes.’’ They are based on the fact that
problem. Q 1997 Academic Press wavelets are well localized in physical space and in Fourier

space. Hence, an operator which does not too much per-
turb this localization has, for a given precision, a sparse

1. INTRODUCTION representation in this basis. It also allows efficient diagonal
preconditioning as first observed by Jaffard [28]. SeveralIn recent years the development of multiresolution tech-
papers such as [16] have exploited this property of a wave-niques and wavelets has had a tremendous impact on signal
let basis which can be viewed as a particular multileveland image processing and many other fields. One of them
scheme. In [15] a further step has been made incorporatingis the numerical solution of partial differential equations
a homogeneous elliptic differential operator into the con-where related ideas have been popular for a long time.
struction of a biorthogonal basis. Used in a Petrov–Speaking of a PDE we have in mind a partial differential
Galerkin method it generates a block-diagonal matrix. Aequation with one or more dimensions in space and a time
remarkable fact when employing wavelets for the discreti-derivative such as typical for conservation laws. Below,
zation of Calderon–Zygmund operators is that both, thethe derivative in time is generally discretized by a finite
operator and its inverse have a sparse representation [37].difference scheme while a wavelet discretization is used
The BCR algorithm [6] is an algorithm which can be usedin space.
to benefit from this fact. Starting from a given matrix itIt is beyond the scope of this introduction to survey all
generates a sparse, compressed representation of this ma-the relevant literature on the application of wavelets to
trix which then speeds up linear algebra. When, e.g., re-
sulting from the discretization of a usual difference opera-
tor powers of the compressed matrix are even more sparse.

1 Present address: Institut für Hydromechanik, Universität Karlsruhe,
Kaiserstraße 12, 76128 Karlsruhe, Germany.

This has been used in [21, 1] for linear evolution equations.2 Present address: Institut für Chemische Technik, Universität Karls-
ruhe, Kaiserstraße 12, 76128 Karlsruhe, Germany. We subsume the cited methods (and others not mentioned
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here for lack of space) as ‘‘decomposition schemes’’ since showed that some Galerkin and collocation schemes are
equivalent and gives their relation to the method of Harten.they start from a regular structure, a uniform discretization

or a given matrix, and employ a certain multilevel decom- When dealing with adaptive discretizations, or boundary
conditions, one or the other kind of approach may, how-position which then allows preconditioning or fast algebra.

The underlying regular discretization, however, is still ever, have conceptual and practical advantages.
The present algorithm is an ‘‘adaptive inversionpresent.

Although in principle the wavelet multilevel decomposi- scheme.’’ It employs semi-implicit time discretization for
a parabolic PDE and is direct. No linear system needs totion of the operator could be used in connection with an

adaptive decomposition of the solution this is straightfor- be solved due to diagonalizing the stiffness matrix through
an appropriate choice of test and trial functions in a Pe-ward only for relatively few wavelet methods. Some of

these are the ‘‘adaptive evaluation schemes.’’ They are trov–Galerkin method. The adaptive discretization ex-
ploits the compression property of wavelets. In contrast tocharacterized by the fact that the solution is discretized in

an adaptive wavelet basis and that a discretized differential most signal processing tasks, however, avoiding a costly
regular fine grid for the solution of a PDE requires aoperator is applied to the nonuniform unknowns. This

typically occurs with explicit time discretization. Examples bottom–up strategy of successive local refinements. Only
the subset of the relevant amplitudes is to be computed.are [2], the collocation method of [11] based on a particular

Sobolev inner product, and the seminal work of Harten This loss of regularity in the index set is an essential diffi-
culty of the approach which we overcome in a particular[25]. In [26] a broad multiresolution framework is devel-

oped which allows to incorporate existing algorithms for way in the present paper. Recall that the classical Mallat
algorithm can no longer be employed in the lacunary casehyperbolic conservation laws.

The third class of methods are the ‘‘adaptive inversion as it is based on the use of the scaling functions’ coefficients
on each scale which do not exhibit the same lacunarity asschemes’’ using simultaneously an adaptive discretization

of the unknown and a sparse representation of the opera- the wavelet coefficients. In that case it is not clear how to
define a suitable projection on the lacunary basis.tor. Elementary ones such as [34] set up a Galerkin matrix

for an adaptive wavelet representation of the solution with Let us note that the need of repeated transforms between
physical space, i.e., the values at certain grid points andthe system then to be solved by a standard method. A

similar approach is made by [4] using the interpolatory coefficient space, originates in the nonlinearity of the PDE
to be solved. For linear operations such as derivation, mul-multiresolution of [20] to define an adaptive collocation

scheme and to incorporate boundary conditions. The price tiplication by powers of the independent variable etc. the
conversion to operations on the wavelet coefficients is pos-for the interpolatory basis, however, is that diagonal pre-

conditioning in this basis does not yield bounded condition sible [31, 21]. For simple nonlinearities the approximate
evalution in coefficient space has been studied by Beylkinnumber [5]. In [49] the authors have developed a similar

multilevel collocation method with a linear system to be [7] and others. But for general nonlinear terms such as
encountered in combustion modeling the evaluation insolved on each level. An early attempt to exploit the com-

pression of the operator and its inverse in a wavelet basis physical space seems to be unavoidable.
Different strategies to cope with locally refined waveletas well as adaptive wavelet representation of the solution

has been made in [33] using the theoretical results of [48]. basis have been developed. Plantevin [39] constructs an
orthonormal basis for a given locally refined dyadic grid.The present work is to be viewed in this line. A different

approach has been taken by Perrier and Charton [12] which As each modification of the grid requires a new basis con-
struction this can become very costly and seems not to beuse an algebraic wavelet method, based on a finite differ-

ence scheme, to compress the discrete inverse operator appropriate for the use in the adaptive discretization of
unsteady solutions of PDEs. Ponenti [40] aims at retainingand the actual solution during the time advancement.

In all of the three families we find Galerkin, collocation, as much of the unmodified compactly supported wavelet
basis as possible and succeeds in modifying only thoseand algebraic methods or some sort of hybrid approaches.

Galerkin schemes potentially allow easier incorporation functions that live near the border of the index set of
retained wavelets. However, the projection step onto theof the operator into the basis construction, better precondi-

tioning, and are more accessible to theoretical analysis. On space spanned by these functions is left unconsidered.
Sweldens [46] has developed a strategy which allows almostthe other hand, adaptive transforms and boundary condi-

tions can easier be realized with collocation. The cited arbitrary spacing of grid points. A completely irregular
discretization, however, makes it difficult to take into ac-collocation schemes, however, generally give up the condi-

tion of vanishing moments which may have undesirable count differential operators and to consider smooth bases.
The present construction retains the wavelet basis as it is.consequences. Although starting from different discretiza-

tion many of the resulting algorithms exhibit similar fea- A lacunary subset is accessed through a simple hierarchical
subtraction strategy which permits us to compute individ-tures. Under certain uniformity conditions Gomes [24]
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ual coefficients of the wavelet series with linear operation Assume the set of closed subspaces hVj jj[Z with Vj ,
Vj11 being a multiresolution analysis (MRA) of L2(R) withcount [22]. We give a detailed description of the algorithm

for a pure wavelet decomposition and improve the former scalar product k ., .l and norm i.i2. Let this MRA be gener-
ated by some function b(x) through dyadic dilation andalgorithm by employing the cardinal Lagrange function.

This is important as it results in speedup, facilitates the translation, i.e.,
implementation, and allows a clearer analysis of the proce-
dure. Up to here, the approach is similar to the partial bj,k(x) 5 2j/2b(2jx 2 k) (2.1)
collocation method briefly sketched in [35] and the multi-
level collocation for frames of [49]. The next important with hbj,i ji constituting a Riesz basis of Vj, not necessarily
step is to incorporate the differential operator into the being orthogonal. The index convention for other functions
basis. Thereby, the related stiffness matrix is diagonalized, below will often be slightly different from (2.1) but made
avoiding its assembly and inversion. This is particularly precise each time. Dropping an index means setting it to
favorable when frequently changing the set of active basis zero, such as bj 5 bj,0, b 5 b0. The orthonormal scaling
functions. We show how the hierarchical decomposition function and wavelet function for this MRA are denoted
into a lacunary basis of the first part can be adapted to f and c, respectively. The function f can be obtained from
this situation. Thereby, we arrive at an interpolatory trans- b through orthonormalization, but occasionally we also set
form for a fully adaptive operator–orthogonal wavelet– b 5 f right from the start. Furthermore, we suppose that
vaguelette decomposition. It is implemented to solve ellip- c has M 1 1 vanishing moments. Due to the MRA structure
tic problems in one and two space dimensions with periodic any function fJ [ VJ can be written as
boundary conditions. In a final step the algorithm is applied
to unsteady reaction–diffusion problems, where the semi-

fJ (x) 5 O
k

cJ,k fJ,k (x) 5 O
k

c0,k(x) 1 OJ21

j50
O
k

dj,k cj,k (x),implicit time discretization requires the solution of an ellip-
tic problem in each time step. The set of relevant coeffi- (2.2)
cients to be computed is furnished by a dynamic adaption
strategy in coefficient space. employing (2.1) for the definition of shift and scale index.

The paper is organized as follows. We start in Section Bounds for the translation indices are left unspecified
2 with the case of a pure wavelet decomposition and intro- throughout, as these will later be governed by the periodi-
duce the relevant notation and properties. Furthermore, zation. The index j 5 0 for the coarsest scale in (2.2) is
the inverse transform described here will be retained later arbitrary and chosen for later convenience. The filters
on in the complete algorithm. In Section 3 we develop
the wavelet–vaguelette decomposition and demonstrate G j

n 5 kfj,n, cj21,0l, H j
n 5 kfj,n, fj21,0l (2.3)

its relation to PDEs. For clearness and ease of notation
the method is outlined in these first sections considering

are classically used for the transition between both repre-
the real line. The practical implementation, however,

sentations in (2.2). They can be obtained in physical space
makes use of periodicity. Hence assembling some remarks

for compactly supported bases and in Fourier space
related to this topic in a separate section seems to be

through
appropriate (Section 4). With the ground prepared in such
a way the description of the two-dimensional algorithm in

Ĥ*(g) 5 f̂(2g)/f̂(g), Ĝ*(g) 5 ĉ(2g)/f̂(g), (2.4)Section 5 can be rather brief. In Section 6 we investigate
the essential decay properties of the employed basis func-

where the notation of the Appendix, Eq. (A.5), is em-tion by means of numerical experiments. We finally report
ployed to emphasize the periodicity of these expressionssample computations for one- and two-dimensional flames
with respect to g. Given a function f [ L2(R), a projectionwhich illustrate the properties of the presented method.
PJ has to be applied to obtain fJ 5 PJ f. At this point
there exists a certain liberty. In [47] different quadrature

2. RECURSIVE INTERPOLATORY TRANSFORM FOR formulas are developed for this task. The algorithms below
ORTHOGONAL WAVELETS rely on the collocation projection as it allows easy connec-

tion to values in physical space and successive coarseningThe following approach is by no means restricted to
of the employed grids. It is defined byorthonormal wavelets but can rather be applied to any

basis exhibiting scale separation (even when this only holds
in a qualitative way as in [9]). Since orthogonality of the fJ S k

2 JD5 f S k
2 JD. (2.5)

employed basic wavelets is crucial for the later discretiza-
tion of a PDE we formulate it in these terms right from
the beginning. Hence, fJ in (2.2) is determined through
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Consider the points of nested dyadic grids in R
fJ (x) 5 O

k
f S k

2 JD SJ Sx 2
k
2 JD (2.6)

xj,i 5
i
2j, i, j [ Z (2.10)

with the cardinal Lagrange function SJ of VJ defined by

verifying the trivial recursion

SJ S i
2 JD5 di,0, VJ 5 span HSJ,k 5 SJ Sx 2

k
2 JDJ

k
. (2.7) xj11,2i 5 xj,i, xj11,2i11 5 Asxj,i 1 Asxj,i11. (2.11)

In the following the cardinal interpolation function will
(The scale index for this function is defined without the play the role of the scaling function employed in the classi-
factor 2 j/2 for ease of notation.) Combining (2.2) and (2.6), cal algorithm. We therefore define the filters
the coefficients cJ,k in (2.2) are computed by application
of the interpolation filter D j

m 5 kSj,m, cj21,0l (2.12)

representing collocation projection onto Vj and subsequent
I J

n 5 kSJ,n, fJ,0l, I J
`

* (g) 5 22J/2 Î*Sg
2 JD, Î*(g) 5 Ŝ(g)/f̂(g) projection onto Wj21 when applied to the values h f (xj,i)ji.

Similar to recursions in j for H j
`

, G j
`

one can show
(2.8)

PROPOSITION 2. The filters D j in (2.12) verify the recur-
rence relation

to the sampled values hf(k/2J)jk.
Note that when using wavelets for the discretization of

(D j21
`

)*(g) 5 23/2(D j
`

)*(2g), g [ T. (2.13)
a PDE one would like to exploit the regularity of these
functions to obtain efficient approximation of smooth solu-

Proof. Equations (2.3), (2.8), (2.12) yieldtions. If, however, the projection step has a truncation
error of order much lower than this regularity, it is useless

D j
m 5 O

l
G j

l I j
l2m. (2.14)to employ regular wavelets. The classical projection cJ,i 5

f (xJ,i) to determine fJ in (2.2), for example, converges only
like O(h) with h 5 22J. Let us remark that in the L2 setting Transfer to Fourier space and application of (2.4) and
considered so far interpolation has no meaning. However, (2.8) back and forth for j 2 1 and j, respectively, gives
as soon as the basis functions have sufficient regularity the the assertion.
same multiresolution can be viewed as a multiresolution

The following theorem describes the biorthogonality ofin the L2-Sobolev space H r of order r $ 1 without any
the filter D J with respect to sampled wavelets and scal-further change [3].
ing functions.The existence of a cardinal Lagrange function SJ of VJ

is guaranteed by PROPOSITION 3. Given cji, Sji, and D J
n defined by

(2.12). ThenPROPOSITION 1. [50]. For a reproducing kernel Hilbert
space V spanned by a Riesz basis hb(x 2 k)jk[Z such that

(i) O
n

D J
n22kcj,l (xJ,n) 5 dj,J21 dl,k, j , J, (2.15)b̂*(g) ? 0, a cardinal Lagrange function exists and is

given by
(ii) O

n
D J

n22k Sj,l (xJ,n) 5 0, j , J, (2.16)

Ŝ(g) 5
b̂(g)

b̂*(g)
, g [ R. (2.9)

where di,k is the Kronecker symbol.

Proof. (i) The sampling theorem in VJ yields

Remark. In [50] the assertion is first proved for
b 5 f constituting the kernel of the reproducing kernel cj,l (x) 5 O

n
cj,l S n

2 JD SJ,n(x), j , J. (2.17)
Hilbert space V. Equation (2.9) then is deduced as Riesz
bases can be converted from one into the other and
since S is unique modulo discrete shifts. For spline Applying scalar products with cJ21,k on both sides and

using (2.12), together with the orthogonality of the wave-spaces this equation has already been used by Schoenberg
[43]. lets proves (2.15).
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(ii) Analogously, starting from cients in (2.2) is to be computed, it is more economical
to use fast convolution by means of FFT employing the
technique described in [22]. But this is not the aim here

Sj21,k(x) 5 O
i

Sj21,k S i
2 JD SJ,i(x) (2.18) as we consider nonuniform discretization. Similar to the

above algorithm we can now devise an inverse transform
by successive recombination using the interpolation prop-

with j , J and using the orthogonality of cJ21,i with respect
erty of S and the decomposition according to Proposition 3.

to functions in Vj with j , J, Eq. (2.16) is proved.
ALGORITHM 2. (Inverse wavelet transform).COROLLARY 1.

given coefficients hc0,iji, hdj,ijj50,...,J21,i.O
n

nkD j
n 5 0, k 5 0, ..., M; j [ Z (2.19) Step 1. Set j 5 0 and

f0(x0,i) 5 O
k

c0,kf0,k(x0,i), i 5 ? ? ? (2.22)Proof. Equation (2.19) follows from (2.17) with c(x)
replaced by xk. Scalar products with cJ21,k on both sides
allow us to use the moment conditions for c. Step 2. Compute fj11 at even grid points

The above shows that, in fact, the filters D j correspond
to finite difference formulas of order M 1 1. With the

fj11(xj11,2i) 5 fj (xj,i) 1 O
k

dj,kcj,k(xj,i), i 5 ? ? ? (2.23)present construction these filters generally do not have
compact support which results in most cases from the ap-
pearance of the cardinal function. In particular, their decay Step 3. Compute fj11 at odd grid points,
is algebraic for the multiresolutions of Meyer wavelets
employed below and exponential for spline wavelets. The fj11(xj11,2i11) 5 O

k
fj (xj,k)Sj,k(xj11,2i11)

latter also holds for Daubechies wavelets since their
cardinal function has noncompact support and decays ex-

1 O
k

dj,kcj,k(xj11,2i11), i 5 ? ? ?

(2.24)

ponentially [50], except the Haar case which is excluded
from here on.

Up to now we have used the filter D j only with j 5 J.
iterate Step 2 and Step 3 for j 5 1, ..., J 2 1.The following algorithm accomplishes a wavelet transform

by successively coarsening the samples. Using (2.7) and (2.11) Steps 2 and 3 can be assembled in

ALGORITHM 1. (Wavelet transform).
fj11(xj11,i) 5O

k
fj(xj,k)Sj,k(xj11,i) 1O

k
dj,kcj,k(xj11,i), i 5 ? ? ?

given samples h f (xJ,i)ji for some J [ N with xJ,i from (2.10).
Step 1. fJ (xJ,i) 5 f (xJ,i), set j 5 J. (2.25)
Step 2. Compute

which again makes obvious the role of the cardinal function
dj21,k 5 O

n
fj (xj,n)D j

n22k, k 5 ? ? ? (2.20) as a substitute for the scaling function.
In many applications a priori information can be used

for adapting the index set of required coefficients in (2.2)
Step 3. Subtract the contribution from Wj21 at the even to a given function f. In most cases local importance of
grid points fine scale coefficients is due to the presence of singularities

or almost-singularities in f. The decay of the wavelet coef-
fj21(xj21,i) 5 fj(xj,2i) 2O

k
dj21,kcj21,k(xj21,i), i 5 ? ? ? (2.21) ficients in scale and space depends on the strength of the

singularity and is well known; see [27, 37] and others. Then,
the relevant indices for dj,i fulfil a so-called cone condition.iterate Step 2 and Step 3 down to j 5 1.
It roughly means that at a given point x with finest localfinally compute hc0,iji using hI 0

njn from (2.8).
scale jx all basis functions on scales j , jx of which the
(numerical) support contains x are retained. This propertyThe algorithm exploits the fact that if fj is known to

belong to Vj, the values at the points xj,i uniquely determine is no prerequisite for the sequel but increases the efficiency
of the method.the decomposition in this space by the sampling theorem.

These coefficients are computed by the discrete orthogo- Although generally having noncompact support the fil-
ters D j and cj,i exhibit rapid decay and can therefore benality relations of Proposition 3. In the periodic case the

algorithm even becomes slightly simpler as the final step truncated in space up to some prescribed tolerance. The
operations in step 2 and step 3 of Algorithm 1 then arealmost disappears. If, furthermore, the entire set of coeffi-
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only carried out on subgrids of hxj,iji. This increases the kuj,i, ek,ml 5 dj,kdi,m, kh j,i, nj,kl 5 di,k. (3.4)
savings in each step and requires f to be known only at
the union of the involved truncated grids. At the price of Observe that scale invariance (2.1) no longer holds.
a slight error, apart from the one due to the neglect of Apart from a scaling factor depending on s the reason is
small coefficients, it yields an O(N) operation count, where that an inhomogeneous operator (in contrast to a homoge-
N is the number of active basis functions with the order neous one) involves spatial scales on its own determined
constant depending on the (fixed) length of the employed by the ratios of different coefficients. These ratios are not
filters. The operation count for the inverse transform is altered with j in (3.2) and (3.3). The functions uj,i, ej,i are
the same as for Algorithm 1 since the sums in (2.24) are called vaguelettes [37] as they have similar properties as
shorter than the one in (2.20). Observe that the error from wavelets (not necessarily being orthogonal) apart from
truncation of the filters does not affect the perfect recon- dilation invariance. In particular, they have vanishing mo-
struction property of the transform and its inverse which ments and fast decay which is shown below. The latter
is preserved by construction. This was not necessarily the property is of primary concern since it affects the length
case in [22] where, furthermore, a grid finer than hxj,iji was of the involved filters in the proposed method.
required for the computation of hdj21,iji to avoid aliasing. We now analyse the functions defined in (3.2) and (3.3),
As a consequence, the restriction to wavelets well localized as well as the required operator-adapted cardinal func-
in Fourier space such as the Meyer wavelets is removed tions. Replacing L with its homogeneous counterpart per-
by the present method. mits us to verify that for j R y, i.e., for strong refinement,

no degradation occurs. As limjR` (iLcj,ii/iL
.
cj,ii) 5 1 for

3. OPERATOR-ADAPTED BASES any suitable norm i.i the homogeneous operator in some
sense constitutes a worst-case limit of L when considering

An essential step is now the extension of Algorithm 1 to
its action on elements of Wj with increasing j.

biorthogonal vaguelettes. These can be adapted to certain
Let us start with the following statement which can be

operators so that such an algorithm may be applied to
deduced from classical Fourier analysis [45]. It determines

solve (pseudo-) differential or integral equations by a Pe-
the decay of a function in physical space by the regularity

trov–Galerkin scheme. The result is a so-called wavelet–
of its Fourier transform.

vaguelette decomposition of the solution and the right-
hand side. Although wavelets are employed to furnish bet- PROPOSITION 4. Let
ter bases for numerical algorithms than trigonometric poly-
nomials the analysis below relies heavily on the Fourier

(dg)kf̂ [ L1(R), k 5 0, ..., n, (3.5)transform. This technique is well suited for the considered
operators and furnishes powerful tools.

Let us denote by s(j)5 os
m50 am (2fij)m the symbol of for some n [ N0. Then xn f [ L`(R). This yields (Rie-

a linear operator L of order s [ N0 with constant coeffi- mann-Lebesgue)
cients given by Lu 5 os

m50 am (­x)mu(x). In the following
we consider inhomogeneous elliptic differential operators,

lim
uxuR`

xnf 5 0. (3.6)which means that s(j) . 0, and we aim to solve the
equation

A priori, the Fourier transform in (3.5) has to be under-Lu 5 f (3.1)
stood in a distributional sense. However, in all applications
below the considered expressions belong to L2(R) as well

for u(x). The inverse L21 is represented by the symbol (without being mentioned explicitly every time) so that f̂
1/s(j) and the adjoint L* by the complex conjugate has the classical L2-meaning. Proposition 4 can now be
s(j). The corresponding homogeneous operator which is applied to the functions defined above.
obtained by only retaining the highest order term of L is
denoted L

.
with the symbol s

.
5 as(2fij) s. PROPOSITION 5. Let L be an inhomogeneous elliptic

Under suitable conditions (cf. below) one can define operator of order s [ N with symbol s . 0. Let L
.

be the
the functions corresponding homogeneous operator containing only the

highest order term of L. Consider an MRA with the orthogo-
nal wavelet c fulfillinguj,i 5 (L*)21cj,i, ej,i 5 Lcj,i (3.2)

h j,i 5 (L*)21fj,i, nj,i 5 Lfj,i. (3.3)

ud k
gĉ(g)u #

Ck

(1 1 ugu)r111e
, k 5 0, ..., n; n [ N0, (3.7)

By construction these fulfill the biorthogonality relations
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for some r $ s, e . 0, and positive constants Ck. Suppose the homogeneous operator L
.

with symbol s
.

(0) 5 0 may
produce a singularity when dividing by the symbol. Asfurther that
f̂(0) 5 1, the function h cannot be constructed in a classical
sense. In other words, the equation L

.
h 5 f cannot beE xlc(x) dx 5 0, l 5 0, ..., M, (3.8)

solved for the right-hand side f. This is different for L
.
e

5 c. In Fourier space (3.8) reads
with M $ s. Then the functions u, e, h, n as defined in (3.2)
and (3.3) (with u 5 u0,0 etc.) have the same asymptotic decay

d l
gĉ(g)ug50 5 0, l 5 0, ..., M. (3.11)rate as f and c. This remains true for u, e, n when replacing

the inhomogeneous operator by the homogeneous one.
As M $ s, the expression û 5 ĉ/s

.
still vanishes at g 5 0.

Before turning to the proof a few remarks are appro- Therefore û and its derivatives exist and remain integrable
priate. It will become clear that the above assumptions are close to the origin also for the homogeneous case. For
not necessary conditions for the required decay rates but large g the situation is the same as before.
rather sufficient ones. They are oriented toward the typical

Proposition 5 has been formulated for the scale j 5 0.MRAs and are well suited for the present examples. For
Due to the rescaling property (2.1) for the functions cj,i itexample, an r-regular MRA as defined in [37] is a special
holds for all j. Inequality (3.10) is just modified by supple-case of the considered MRAs and is obtained if (3.5) holds
mentary factors 2js or 22js in the constants and rescaling offor any n [ N0. The above setting partly results from the
x by 2j. Other properties can be deduced immediately bydesire to cover Meyer wavelets which need not be r-regu-
similar reasoning.lar. Let us sum up the different parameters characterizing

the MRA: r determines the differentiability of f and c, M
COROLLARY 2. Under the conditions of Proposition 5specifies the number of vanishing moments, and n describes

it can be shown that c, f [ Hr, e, n [ Hr2s, and u, h [the decay of f, c, and their derivatives up to order r. For
Hr1s which holds, apart from h, for the homogeneous caseparticular MRAs these parameters are coupled differently.
as well. Furthermore, u and e have M 1 1 vanishing mo-The Meyer MRA corresponds to infinite r and infinite M
ments. In the homogeneous case this number modifies towhile n depends on the construction (n 5 4 in the present
M 1 1 2 s and M 1 1 1 s, respecively.computations). Spline wavelets are related to r 5 m 2 1,

M 5 m 2 1 and infinite n, where m denotes the (even) We now turn to the cardinal Lagrange functions in the
order of the spline. operator-adapted case and define the spaces

Proof. Equation (3.7) yields
VL;j 5 spanhLbJ,iji 5 spanhnJ,iji. (3.12)

d k
gĉ(g) [ L1(R), k 5 0, ..., n. (3.9)

Cardinal functions of these spaces are obtained similarly
Hence from Proposition 4 as before.

PROPOSITION 6. Under the conditions of Proposition 5
uc(x)u #

C
(1 1 uxu)n (3.10) the spaces VL;J have a cardinal Lagrange function SL;J if

O
k[Z

s(g 1 2Jk)(bj

`

)(g 1 2Jk) ? 0.for some positive C. As the wavelet and the orthogonal (3.13)
scaling function are intimately related by construction,

It is given by(3.7) and, therefore, (3.10) apply for f as well. Obviously,
the power r is not required in the above. It serves, however,
to prove the same decay for the derivatives in space d k

xf
SL;J

`

(g) 5
s(g)bJ (g)

2Jok[Z s(g 1 2Jk)(bJ)(g 1 2Jk)
.and d k

xc up to k 5 r, as these are reflected by multiplication

`

` (3.14)
with gk in Fourier space. Hence, n and e which are just
sums of derivatives up to order s # r decay similarly to

The same remains true for L replaced by L
.
.(3.10). This is not modified when replacing L with L

.
. Now

consider u defined by û 5 ĉ/s. The existence of the deriva- PROPOSITION 7. Under the conditions of Proposition 5
tives of ĉ up to k 5 n and s [ C `, s . 0 show that the functions S, SL, and SL

. , if they exist, fulfil the same
d k

gû, k 5 0, ..., n, exist. For small g the symbol tends to a asymptotic decay estimates (3.10) as f and c.
constant while s p gs for large g. Hence, if d k

gĉ [ L1(R)
so is d k

gû. Application of Proposition 4 shows the decay Proof. According to the remark after Proposition 1, Ŝ
can be obtained through dividing f̂ by f̂*, a 1-periodicrate (3.10). The same arguments apply to h. Switching to
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function. The condition uf̂*u $ C . 0 has to be fulfilled The task then is to accomplish a basis transform from
hSL;J,ij to hn0,i, ej,ij when f is given at the required gridfor S to exist. Hence, uŜu # (1/C)uf̂u. By construction f̂*

has the same number of derivatives as f̂ so that Ŝ fulfills the points. Due to Proposition 7, the limit j R y does not
constitute a problem in the construction. Of course, theconditions (3.7) and therefore the assertion. SL

`

is obtained
sums of f0,i and n0,i in (3.15) and (3.16) can be replacedanalogously as Ŝ replacing f̂ by n̂. Using Proposition 5 the
by linear combinations of S0,i and SL;0,i, respectively. Thisabove remarks apply identically to SL

`

and SL
.`

.
avoids another type of filters.

It can be shown that the sets h22sjej,ij, h2sjuj,ij, and h22sjnj,ij The biorthogonal basis is now used in the adaptive algo-
form Riesz bases of the spaces they generate [22, 40]. rithm of the previous section, replacing SJ,m with SL;J,m and
Considering the homogeneous case we have seen that an D j

m with
algorithm involving the functions h j,i would not be practical
for large j. Ponenti [40] points out that with increasing j D j

L;m 5 kSL;j,m, uj21,0l. (3.18)
these functions more and more tend to the Greens function
of the (inhomogeneous) operator. The common shape for

This filter fulfills analogous relations as D j apart fromall j destroys the essential zooming-in property. Hence, the
scale invariance, in particular discrete orthogonality andfunctions h2sjh j,ij do not form a Riesz basis in the limit
vanishing moments. Its decay is determined by Proposi-j R y. This important observation triggered the construc-
tions 5 and 7. Another reasoning is illustrative and moretion in the cited reference where the unknown u in (3.1)
direct. It uses the equivalent of Proposition 4 for the Fou-is developed in terms of uj,i (and not in terms of cj,i as
rier transform f̂ *(g), g [ T (see Appendix).below). To avoid the use of the unstable set h J,i a modified

basis is constructed by means of some finite difference PROPOSITION 8. Under the conditions of Proposition 6
operator compensating the singularity in Fourier space. the filter D j

L;m has the same decay with m as D j
m.

This makes the construction rather complicated. Further-
Proof. Inserting (3.14) and the definition of uj,i (3.2)more, the projection step depends on this filter and is

into (3.18) leads to cancellation of the symbol s andnot obvious.
The present algorithm has been developed indepen-

dently from [40] and is different in the following sense.
We do not assume u [ H r1s, as with the representation in D j

L;m 5 E
T

bj,0(g) cj21,0(g) e22fimg

2J ok[Z s(g 1 2Jk)(bJ)(g12Jk)
dg. (3.19)

` `

`

terms of uj,i, but rather u [ H r, and we approximate the
unknown u in (3.1) by some uJ [ VJ,

The denominator is a smooth nonzero bounded 2f-peri-
odic function which does not alter the decay properties in

uJ (x) 5 O
i

c0,if0,i(x) 1 OJ21

j50
O

i
dj,icj,i(x). (3.15) physical space. In [37] a similar argument is applied to the

orthonormalization procedure for the classical wave-
lets.

The right-hand side f is then approximated accordingly by
The actual computation of D j

L;m is not based on (3.19)fL;J [ VL;J which can be expressed as
but is described in Section 4. We now obtain the following
algorithm for the adaptive solution of (3.1).fL;J (x) 5 O

i
k f, h J,ilnJ,i(x) 5 O

i
k f, h 0,iln0,i(x)

ALGORITHM 3. (Operator-adapted decomposition).

1 OJ21

j50
O

i
k f, uj,ilej,i(x).

(3.16)
given index set Ld , LJ 5 h( j, i)u j 5 0, ..., J 2 1, i [ Zj

for the amplitudes dj,i of a lacunary wavelet basis in
VJ with some J [ N0, a method to evaluate f.

Inserting (3.15) and (3.16) in (3.1) and applying a Petrov– Step 0. Compute D j
L, ej21,0 j 5 1, ..., J, where J 2 1 is the

Galerkin method with test functions hh 0,i, uj,ij shows that, finest scale in Ld. Truncate these in space according
having computed the two rightmost terms of (3.16), the to a given precision.
solution uJ is obtained with c0,i 5 k f, h 0,il, dj,i 5 k f, uj,il in Step 1. Determine the index set Lx of points xj,i required
(3.15). In order to determine these coefficients we use the in the subsequent quadratures. Require the r.h.s. at
representation of fL;J in terms of the cardinal Lagrange these points
function SL;J of VL;J analogously to (2.6)

fJ (xj,i) 5 f (xj,i), ( j, i) [ Lx. (3.20)

fL;J (x) 5 O
i

f S i
2JD SL;J Sx 2

i
2JD. (3.17)

Set j 5 J.



182 FRÖHLICH AND SCHNEIDER

Step 2. f̃̂ (n) 5 f̂ (n), n [ Z (4.2)

(see Appendix). This generates the periodic analogues bj,k̃ ,dj21,k 5 O
( j,i)[Lx

fj (xj,i)D j
L;i22k, ( j 2 1, k) [ Ld. (3.21)

fj,k̃ , cj,k̃ of the functions bj,k, fj,k, cj,k and the periodic
MRA of the spaces Vj̃ 5 span hbjiji50, ...,2j21, j [ N0. The
index range is due to the periodicity fj,ĩ 5 fj,i1k2j̃ (k [ Z)Step 3.
introduced by (4.1). It carries over to all filters and func-
tions in L2(T) below. By construction the orthogonalityfj21(xj21,i) 5 fj (xj,2i) 2 O

( j21,k)[Ld

dj21,k ej21,k(xj21,i),
between shift invariant functions is preserved under (4.1).
Furthermore, fj,k̃ 5 1 for j # 0 as the functions hfj,iji( j 2 1, i) [ Lx.

(3.22)

constitute a partition of unity, and S0,0̃ 5 f0,0̃ for the same
reason. Denoting this function by c21,0̃ for brevity, anyiterate Step 2 and step 3 down to j 5 1.
fJ̃ [ VJ̃ can then be written asfinal step compute

c0,k 5 O
i

f0(x0,i)I 0
L;k2i (3.23) fJ (x) 5 OJ21

j521
O2j

21

k50
dj,kcj,k(x). (4.3)˜ ˜

with I j
L;n 5 kSL;j,n, hj,0l, analogous to (2.8). In the periodic setting the indices in scale no longer refer

to an affine transform such as (2.1) but rather to applying
In short, the proposed algorithm for the solution of an (2.1) for the nonperiodic counterpart followed by (4.1).

ODE (3.1) reads as follows: given the values of the r.h.s. A result is that functions and filters are related through
at an appropriate set of points, Algorithm 3 is employed recurrence relations in Fourier space [38]. In other words,
to determine the coefficients in the development (3.15) of their Fourier transforms are obtained from the nonperiodic
the solution u. The value of the solution at a point of the counterparts through coarser and coarser sampling for de-
grid is then obtained by Algorithm 2. Hence, we employ creasing j. The values of H j

ñ 5 kfj,ñ, fj21,0̃l, n 5 0, ..., 2j 2
a vaguelette-decomposition and a wavelet-reconstruction 1, for example, can be obtained by
to solve (3.1). This algorithm has been implemented in a
periodized version which is discussed in the following sec-
tion. Observe that when the filters applied in both steps (H j)k 5 22jĤ* Sk

2jD, k 5 0, ..., 2j 2 1, (4.4)˜`
are not truncated and the entire set of basis functions is
used, the method is exactly equivalent to a collocation

with Ĥ* from (2.4). Using the mapping (4.1) a cardinalalgorithm on the grid hxJ,iji. The inversion of a linear system
Lagrange function is readily obtained similarly to Proposi-is replaced by the application of filters into which the in-
tion 1.verse of the operator has been incorporated. As soon as

these are truncated this yields a method which is neither PROPOSITION 9. Let b fulfil the requirements of Proposi-
a Galerkin nor a collocation method but a hybrid one. It tion 1 and let VJ̃ 5 spanhbj,ĩji50, ...,2j21 ( j [ N0) be defined
relies on both, the localization in space and frequency, as through (2.1), (4.1). Then a cardinal Lagrange function of
well as the orthogonality of the wavelets. VJ̃ exists and is given by

4. TRANSITION TO PERIODIC MULTIRESOLUTIONS
Sj (n) 5

bj (n)

2j(bj )n

, n [ Z. (4.5)AND IMPLEMENTATION
˜` ˜`

˜`
The computations below have been executed under peri-

Proof. Since Vj is spanned by shifts of Sj, Vj̃ is spannedodic conditions. This section therefore gives a comprehen-
by shifts of ok[Z Sj (x 1 k). Obviously, the interpolationsive understanding of what sometimes is just subsumed by
property is preserved through periodization so that thisthe term periodization. We furthermore detail the practical
sum indeed is again a cardinal Lagrange function of Vj̃ andcomputation of the employed filters.
therefore defines Sj̃ due to its uniqueness. Using (2.9),Starting from an MRA on the real line, an MRA on the
(4.2), and (A.4) yields (4.5). The nonvanishing denomina-circle T can be constructed through the projection
tor is ensured by the condition on b.

The required filters in the algorithms devised above havef̃(x) 5 O
n[Z

f(x 1 n) (4.1)
to be determined in a preprocessing step. Throughout,
we first compute the exact values and only subsequently
truncate the filters with respect to their length. We employfrom L2(R) onto L2(T) [38, 37]. In Fourier space it reads
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multiresolutions of Battle–Lemarié spline wavelets of even defined by c(x) 5 f(2x 2 1), fast interpolatory transforms
exist, also, in the adaptive case [4]. However, these func-order and Meyer wavelets. As both have noncompact sup-

port, a few remarks are appropriate. tions, c, do not have vanishing moments and are nonor-
thogonal, so that they cannot be used in the present ap-In the present cases the filters H, G, I, D, IL, DL for the

nonperiodic MRAs are given explicitly in Fourier space. proach. Also the construction of compactly supported
operator-adapted wavelets in [15] does not lead to fullRecall that these expressions are 1-periodic functions in g

(cf. Equation (2.4)). Hence, no error is introduced through (bi-)orthogonality of the basis. Further research is required
on this topic.the periodization by replacing g with k/2j. This property

is not shared by the functions f, c, S, e, etc.; they can be
defined in Fourier space but have large or unbounded 5. TWO-DIMENSIONAL ADAPTIVE ALGORITHM
support in g. Therefore the exact values of these functions

We now extend the present method to tensor producthave to be deduced from the filters. The values cJ21,0̃(xJ,i),
MRAs defined in [37]. In this framework the solution u isfor example, are computed by an inverse wavelet transform
developed as[38] having initialized with dj,i 5 dj,J21 di,0. In the particular

case of Meyer wavelets the compact support in Fourier
space can be used to alternatively obtain the function’s uJ (x, y) 5 O

kx

O
ky

c0,kx,ky
f0,kx,ky

(x, y)
values by a DFT of appropriate length since the sum in
(A.6) contains at most two entries. As the symbol s does

1 OJ21

j50
O
kx

O
ky

O3
e51

d e
j,kxky

c e
j,kx,ky

(x, y)

(5.1)

not alter the compact support in frequency space this holds
for ũ, ẽ, SL̃ as well.

For spline wavelets the procedure is more involved. We
withfirst compute an interpolation function in the nonperiodic

case. Thereto, b 5 Nm with Nm designating the B-spline
fj,kx,ky

(x, y) 5 fj,kx
(x)fj,ky

(y) (5.2)of mth order; hence, Lbj 5 2j/2 LNm(2jx). Relating Nm

`

* to
the derivative of the cotangent function [13], for-
mulae for Lbj

`

* are deduced to express SL;j

`

(g). Analo- and
gously to Eq. (2.8) this defines the operator adapted inter-
polation filter I j

L

`

*(g) 5 SL;j

`

(g)/nj
`

(g).
Due to the linearity of the operator L the functions e,

c e
j,kx,ky

(x, y) 5 5
cj,kx

(x) fj,ky
(y), e 5 1,

fj,kx
(x) cj,ky

(y), e 5 2,

cj,kx
(x) cj,ky

(y), e 5 3.

(5.3)n fulfil the same refinement equation as c, f. Hence,
G j

L

`
* 5 G j

`
*. This is used to compute the function

D j
L* (g) 5 G j

L* (g) I j
L* (g) (4.6)

` ` `

The method previously described for the solution of an
ODE in space can now be applied analogously to the dis-

which is then sampled to accomplish the transfer to the cretization of a PDE in two dimensions. The symbol then
periodic setting. Subsequently, the values of ej,0̃ at grid depends on two coordinates; i.e., s 5 s(jx, jy). Since it can
points are generated by the filters as described above. not generally be decomposed as sx(jx)sy(jy), the resulting

Finally note that different MRAs can, of course, be used operator-adapted cardinal function, vaguelettes, and filters
to start from. However, we conjecture that a construction are truely two-dimensional and do not exhibit a structure
in which all the required filters are of compact support analogous to (5.2) or (5.3). (An ADI time discretization
cannot be obtained. Daubechies wavelets, for example, would yield such an operator at the price of altering fine-
have compact support, but the related cardinal function scale components of the solution.) Nevertheless, similar
has not [50]. The construction of interpolating orthogonal decay in space as proved above can be shown for the two-
scaling functions (f 5 S) with compact support is impossi- dimensional case using the same techniques. Periodicity is
ble [17]. Such functions can only be obtained by relaxing accounted for by the technique of Section 4.
the requirement of compact support to exponential decay
[32, 14]. Another class of interpolatory MRAs with com- 6. NUMERICAL EXPERIMENTS
pactly supported functions can be generated by the correla-
tion function of biorthogonal scaling functions [24]. Special As a preliminary step the precision of the wavelet trans-

form defined in Section 2 has been investigated for differ-cases are the fundamental functions of Lagrange iterative
interpolation [19] which is equivalent to the Daubechies ent truncations. Setting f 5 cj,0 ( j 5 21, ..., J 2 1), all

coefficients are computed up to J 2 1. The left part ofautocorrelation function [17] used, e.g., in [20, 5]. Since
for these interpolatory MRAs ‘‘wavelets’’ are generally Table I reports the quantity
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TABLE I

Projection Error E1 of Algorithm 1 and E2 of Algorithm 2 for Meyer Wavelets, Cubic Spline Wavelets (m 5 4), and Quintic
Spline Wavelets (m 5 6)

E1 E2

K Meyer m 5 6 m 5 4 Meyer m 5 6 m 5 4

Full grid 8.7 E-14 5.7 E-14 3.4 E-14 5.5 E-14 7.7 E-14 5.7 E-14
40 2.7 E-5 3.8 E-5 5.6 E-7 8.9 E-6 1.4 E-5 2.2 E-7
30 1.6 E-4 4.1 E-4 1.8 E-5 9.1 E-5 1.2 E-4 5.7 E-6
20 8.6 E-4 4.5 E-3 5.3 E-4 6.3 E-4 1.2 E-3 1.6 E-4

Note. K denotes the number of points from the center of D j, Sj, and cj,i at which summations are stopped, respectively. Finest scale is J 5 10.

E1 5 max
j,k,m

hukcj,0, ck,mlQ 2 dj,k d0,muj, (6.1) of the Helmholtz equation (3.1), (6.2), with a right-hand
side such that the exact solution is

where the index Q of the scalar product denotes its evalua-
uex 5 e2c2(x21/2)2

, c2 5 16000. (6.3)tion by the described recursive quadrature of Algorithm
1. In an analogous way the inverse transform has been
tested. The error E2 is defined similarly to (6.1), replacing Figure 2 displays the resulting L2-approximation error
cj,0 with the function generated by the inverse transform when computing all wavelet amplitudes of the solution,
and k? , ?lQ by the exact scalar product. This is realized in the L`-error behaves analogously. As stated before, the
starting from dj,0 5 1 for one particular value of j and all use of untruncated filters results in a pure collocation
other coefficients zero. An inverse transform with trunca- method the convergence rate of which is determined by
tion and a subsequent exact forward transform without the regularity of the basis functions. With truncated filters
truncation are then executed. the approximation cannot be improved beyond the level

A practically relevant example for the presented method induced by the defect in orthogonality. Hence, the error
is a Helmholtz-type equation arising, e.g., from a semi- tends to a constant with increasing J when this level is
implicit time discretization of parabolic equations as ap- reached. Observe that the values in Fig. 2 nicely correspond
plied below. Hence, we set to those of Table II (in general a multiplicative factor

appears). Furthermore, the result with Meyer wavelets can
L 5 l 2 ­xx, l [ R.0; (6.2) be compared to Fig. 7 of [22]. A decrease of the error by

about two orders of magnitude or, in other terms, half the
i.e., s(j) 5 l 1 4f 2j 2, s 5 2. In the sample computations
l 5 150 has been used corresponding to the time stepping
for the PDE below.

Similar to Table I we first consider the influence of the
truncation on the orthogonality of the basis functions in TABLE II
the operator-adapted case. Some examples are assembled Projection Error E3 of Algorithm 3 for Meyer Wavelets and
in Table II. The error E3 is defined as in (6.1) replacing Quintic and Cubic Spline Wavelets
cj,0 by ej,0 and ck,m by uk,m (unfortunately, comparison to

KD, Ke Meyer m 5 6 m 5 4a similar table in [22] is not possible for implementational
reasons). The level of round-off errors is given by the first

Full grid 1.5 E-12 2.8 E-12 3.5 E-12line. The precision achieved with truncated filters increases
60, 60 3.5 E-5 1.1 E-5 3.0 E-8

if these have stronger decay, i.e., in case of low regularity 40, 40 3.5 E-4 8.5 E-4 2.2 E-5
of the basis. The observed behavior is related to the filters 30, 30 1.6 E-3 8.9 E-3 6.1 E-4
DL plotted in Fig. 1. According to Proposition 8 their

80, 60 1.6 E-5 7.7 E-7 2.6 E-9(algebraic) decay is the same as the decay of D which is
40, 30 3.4 E-4 1.1 E-3 5.3 E-5determined by the properties of the MRA. Indeed, Fig. 1

shows exponential decay when employing spline wavelets Note. KD , Ke denote the number of points from the center of DL;j and
and algebraic decay for Meyer wavelets. ej,i at which quadrature and summation are stopped, respectively. Finest

scale is J 5 10.Next, we report the precision obtained for the solution
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FIG. 1. Absolute value of the filter D j
L;m defined in (3.18) divided by its maximum value versus m for the case of a Meyer MRA, a cubic spline

MRA, and a quintic spline MRA with j 5 9 and L from (6.2). For reasons of symmetry only half of the filter is represented.

filter size for the same precision is observed. Due to the exact result on the respective grids. To assess the amount
of adaptivity which is possible by the approach, Table IIIinterpolatory approach it is also possible now to use spline

wavelets in the solution procedure. The results in the right displays the number Ne of coefficients which are larger in
absolute value than the truncation error e 5 iu 2 uex i2part of Fig. 2 support the above interpretation: for m 5 6

only the stronger truncation influences the accuracy, with the full basis depicted in Fig. 2. Employing only these
coefficients in an adaptive computation would lead to dras-whereas with m 5 4 the filters could still be shortened

without losing considerable precision with respect to the tic savings at the expense of an O(e)-error.

FIG. 2. L2-error iu 2 uexi2 versus J for the one-dimensional Helmholtz problem solved with Algorithm 3 and different basic multiresolutions.
Left: Meyer wavelets. Right: cubic and quintic spline wavelets (all curves of the former are virtually identical).
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TABLE III scales. On the other hand, there are bases with low regular-
ity which lead to shorter filters but steeper cones in theNumber of Ne of Significant Amplitudes in the Computations
index space around singularities or almost-singularities ofof Fig. 2 (see text)
the solution. Another relation can be drawn to the method

J 7 8 9 10 of ‘‘approximate approximation’’ proposed by Maz’ya [36].
He considers approximation schemes exhibiting conver-

M full 18 98 508 508
gence only down to some threshold for the error and, byM 80,60 18 98 146 146
construction, not below. This exactly corresponds to theM 40,30 18 56 66 66
saturation observed in this section for truncated filters.

S6 full 18 74 116 148
S6 80,60 18 74 116 148
S6 40,30 18 56 58 58 7. ADAPTIVE COMPUTATION OF FLAMES

S4 full 12 26 38 58 The above discretization has been devised for the adap-
S4 80,60 12 26 38 58 tive solution of a PDE with evaluation of the nonlinear
S4 40,30 12 26 38 58

terms in physical space. In this section we report results
of one- and two-dimensional computations of this type and
detail further features of the algorithm.

We consider a reaction–diffusion equation originating
from combustion modeling. It describes the propagation

Similar tests have also been made for a two-dimensional of a laminar flame in a quiescent premixed atmosphere
Helmholtz problem with ­xx in (6.2) replaced by ­xx 1 ­yy and is discussed, e.g., in [10]. For a unitary Lewis number
so that the symbol is s(jx, jy) 5 l 1 4 f 2(j2

x 1 j2
y). The (the ratio of the diffusivity of species to the diffusivity of

imposed exact solution was (6.3) with (x 2 As)2 replaced by heat), one-step kinetics, and appropriate initial and bound-
(x 2 As)2 1 (y 2 As)2. The employed filters have been trun- ary conditions the resulting equation for the dimensionless
cated in the form of a square. Different forms could per- reduced temperature T reads
haps slightly improve the efficiency. The results are qualita-
tively the same as those reported above, so that we restrict

­tT 2 =2T 5 r(T)ourselves to the case of cubic spline wavelets here. Table
IV displays the obtained L2-error for different truncations.

r(T) 5
b2

2
(1 2 T)eb(T21)/(11a(T21)).

(7.1)

The number Ne of amplitudes larger than e 5 iu 2 uexi2

was 20, 40, 148 for J 5 7, J 5 8, and J 5 9, respectively,
except for the shortest filter where we counted 20, 45, and
112. Since, e.g., for J 5 9 uniform discretization yields The variables are scaled such that r unit distance corre-

sponds to the characteristic scale for temperature varia-262,144 degrees of freedom, this illustrates the increased
potential for savings through adaptivity in the two-dimen- tions in the flame front. The strong stiffness of this problem

results from the fact that this length is typically muchsional case which of course depends on the actual solution.
The actual choice of the employed MRA has to depend smaller than the domain of interest and that, furthermore,

the region where r .. 0 is only of size O(b21) in theseon the convergence rate in the nontruncated case and the
size of the filters which is needed to maintain the required units. In all computations we employ the semi-implicit time

scheme of second order,precision. On one hand, there are very regular basis func-
tions and longer filters leading to higher precision on large

3
2Dt

T n11 2 =2T n11 5
2
Dt

T n 2
1

2Dt
T n21 1 r(2T n 2 T n21),

(7.2)
TABLE IV

L2-Error of the Two-Dimensional Helmholtz Problem with where the index n represents the time level and Dt the
Square Truncation of the Fitlers

time step. At this occasion we observe that the implicit
discretization of the Laplacian is applied for reasons ofKD, Ke J 5 7 J 5 8 J 5 9
stability. If, e.g., the second-order term contains a variable

Full grid 1.0575 E-3 4.1054 E-4 1.0794 E-4 coefficient it can be decomposed into a sum of a constant
80, 60 1.0575 E-3 4.1054 E-4 1.0794 E-4 coefficient operator discretized implicitly and a perturba-
40, 30 1.0575 E-3 4.1054 E-4 1.0796 E-4

tion discretized explicitly in time. This may in some cases30, 20 1.0563 E-3 4.1714 E-4 1.3349 E-4
yield the required stability. Another solution is to apply



ADAPTIVE WAVELET–VAGUELETTE ALGORITHM 187

FIG. 3. Temperature T 5 T̃ 1 s and reaction rate g (divided by 2.5 for presentation) versus x for a left-traveling thermodiffusive flame front.
The dotted curves correspond to t 5 1, the continuous ones to t 5 7. The tics below indicate the centers of the adaptively selected wavelet basis
functions computed at the respective times. Their number is larger than the value of Ne mentioned in the text due to the adding of neighbors in
scale space. The second cloud for t 5 7 at x 5 0.5 is generated by the periodizing function s(x).

the present algorithm with locally constant coefficients in T̃ n11(x) 5 O
( j,i)[Ln11

d

d n11
j,i cj,i(x). (7.4)

an iterative scheme as investigated in [30] for uniform
discretization.

For the one-dimensional computations we consider a The index set Ln11
d is determined from T̃n by retaining only

steadily propagating flame front similar to the one in [22]. those coefficients which are larger than some tolerance e.
The computational domain [2Lx/2, Lx/2] is mapped onto A moving solution is accounted for by adding to each index
[0, 1] and a flame is initialized in its middle. For physical ( j, i) of this set its neighboring indices ( j 2 1, i/2),
reasons the temperature remains constant in a large parti- ( j, i 6 1), ( j 1 1, 2i) (if these are not yet present) which
tion of the domain before and after the front (cf. Fig. 3). then gives Ln11

d . The solution is advanced in time by first
The values T 5 0 and T 5 1 are attained with the present performing a backward transform of the old solution to
scaling. Strictly speaking, these values should be imposed the locally refined grid of quadrature points (Algorithm 2).
as boundary conditions at y and 2y, but for large Lx they The r.h.s. is then evaluated at these points. Finally,
can as well be imposed at x 5 0 and x 5 1, respectively. the decomposition into the operator-adapted basis
As long as the front remains sufficiently far from the (Algorithm 3) is applied to determine the wavelet ampli-
boundaries it is useful to consider the quantity T̃ 5 T 2 tudes in (7.4). A result is reported in Fig. 3. This computa-
s, where s is a smooth function of x with s(0) 5 0, s(1) 5 tion for Lx 5 30, a 5 0.8, b 5 10 has been performed with
1, and all its derivatives vanishing at x 5 0 and x 5 1. cubic spline wavelets and Dt 5 0.01, J 5 10, e 5 1025. The
Then, T̃ can very well be approximated by a periodic func- adaptive discretization follows the front without a problem,
tion [18]. (A moving reference frame may be used to gener- requiring a number of significant coefficients of about Ne
ate a steady solution but is avoided here for simplicity.) 5 66, most of the time. Nevertheless, the very sensitive
We employ reaction rate is well approximated. With respect to former

computations [22] the new projection method leads to re-
duced cpu time (factor of about 4 for this particular setting)s(x) 5 As(1 1 tanh(t tanSf 3

f
2D)). (7.3)

and a reduced number of quadrature points. This is particu-
larly advantageous when the evaluation of the r.h.s. is
costly.from [18] with t 5 5. At each time step the solution is

developed in a wavelet sum Let us now solve (7.1) in its two-dimensional form. We
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FIG. 4. Computation of an elliptic two-dimensional flame front. Left: level lines of the temperature at t 5 1. Right: active coefficients in (5.1)
located according to (7.5).

avoid the need for periodization here by considering an with the origin in the upper left corner and the Y-axis
directed downwards. As in the one-dimensional case onlyoutward burning flame which, up to a certain time, can be

well approximated with periodic boundary conditions. For the selected degrees of freedom are computed while the
remaining ones are set to zero. The finest scale in thissmall Lewis number and additional radiative heat loss such

flames exhibit interesting behavior [42] and have been com- computation was J 5 7, yielding 128 3 128 possible degrees
of freedom. At t 5 1 only 1510, i.e., roughly 10% of them,puted in [8]. The computational domain [2Lx/2, Lx/2]2 is

mapped onto [0, 1]2 and at each time step the solution is are required to represent the solution with the desired
accuracy. The employed MRA is based on cubic splines.developed according to (5.1) with a lacunary index set.

An analogous sequence of computations as in the one- Observe that, although the basis functions reflect to some
extent the orthogonal coordinate system, this does notdimensional case is then applied to determine the adaptive

wavelet representation of T n11(x, y). For the neighborhood degrade the adaptive discretization in oblique directions.
in scale space of each coefficient ( j, ix, iy, e) we consider
the points ( j 6 1, ix, iy, e), ( j, ix 6 1, iy 6 1, e), and 8. CONCLUSION
( j, ix, iy, mod(e 6 1, 3) 1 1).

Figure 4 reports a result obtained by the presented two- The present algorithm is a step towards an atom-like
dimensional adaptive wavelet discretization. We used use of wavelet basis functions for the solution of PDEs.
Lx 5 30, Dt 5 1022, and e 5 1025. The initial state is given We have developed the method in one dimension and have
by an inclined elliptical flame front which then propagates analyzed the resulting filters. The approach has also been
in an outward direction. Due to the physical stability of extended to a truely two-dimensional fully adaptive wave-
thermodiffusive flames at unitary Lewis number [44] the let discretization in space. With respect to earlier work
front relaxes to a circle. This example has been selected as [22] the improved methodology results in a clearer presen-
its solution and is difficult to resolve, e.g., by parametrized tation, an easier analysis, and increased efficiency.
mapping techniques. The presented method has been implemented for peri-

The left part of Fig. 4 shows level lines of the solution odic MRAs and could as well be used for initial value
at t 5 1. The right part presents the instantaneous set of problems in unbounded domains. The direct incorporation
adaptively selected coefficients in (5.1). These are repre- of essential boundary conditions is not compatible with
sented in the standard way [17, p. 315]; a coefficient the approach since it would destroy the shift invariance of
d e

j,kx,ky
is positioned at the basis. However, the fictitious domain method reduces

the solution of such a boundary value problem to the solu-
X 5 2j(1 2 de,2) 1 kx, Y 5 2j(1 2 de,1) 1 ky (7.5) tion of one or more periodic problems. Hence, employing
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the proposed adaptive algorithm in this framework will f̃*(g) 5 O
n[Z

f (n)e22fig n, g [ T, (A.5)
allow us to account for boundary conditions and general
domains. See, e.g., [41] for the use with a regular discretiza-

is obtained from the sampled values of f. It fulfillstion in terms of the scaling function.
It is evident that the filters applied in the construction

f̃*(g) 5 O
k[Z

f̃(g 1 k), g [ T, (A.6)are still unsatisfactory as they do not have compact support
right from the start and have to be truncated. The basic
multiresolutions with noncompactly supported cardinal

due to the Poisson summation formula. Equations (A.3)–functions are not the only reason for this fact. A further
(A.6) remain valid for k [ Z, g [ R, since f̃̂k and f̂* aredifficulty results from the incorporation of the operator
periodic with period 2j and 1, respectively.inverse which is related to the Greens function. Its advan-

tage is that no linear system needs to be solved. Other
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